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Abstract. Processing of a big experimental data is a problem in neu-
rophysiologic researches. Epileptiform discharges (ED) detection in long
EEG-records requires an algorithm for recognition of ED and sleep spin-
dles (SS). Electroencephalogram recordings were performed in rats us-
ing implanted electrodes before and after traumatic brain injury (TBI).
Intervals about 10 second with typical ED and typical SS have been
manually selected from these records by experts. The algorithm for the
allocation of events from background activity was developed. Parameters
founded by the algorithm can serve as criteria for the recognition of ED
and SS events.
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1 Introduction

Posttraumatic epilepsy (PE) is a serious medical and social problem. It develops
in 2–17% of patients after traumatic brain injury (TBI) [1]. It takes years
for a posttraumatic epileptogenesis to develop and its mechanisms are poorly
understood. At the same time, prediction of PE in clinical practice is the unsolved
problem [9]. Animal models [11,6] are widely used to study neurobiological
mechanisms of epileptogenesis to detect biomarkers for PE development and
to find new targets for drugs to prevent PE.

PE induced by lateral fluid percussion (LFP). Head trauma reproduces clini-
cal signs and, most likely, pathogenesis of PE [10]. Silent period of epileptogenesis
from TBI to first unprovoked seizure in rats takes weeks. Many groups using
this model are focused on delayed consequences appearing weeks and months
after TBI [3]. However, appearance of early epileptiform discharges (ED) on
electroencephalograms (EEG) and its dynamics are possible biomarkers of PE
development [4].

So, it has been suggested that the appearance and dynamics of development
of ED in early posttraumatic period can predict the development of PE. To verify
this hypothesis a detailed analysis of long EEG-records is needed. Total duration
of EEG-records from one experimental group, which consists of 12 experimental
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and 12 sham-operated animals with 2 weeks EEG length per animal, is one year
and it is not the limit. Therefore, automatic detection of ED is essential for
processing big data and we focused on this problem.

TBI was modeled on Wistar rats using lateral fluid percussion of 3 atm. [7].
To detect ED four stainless steel epidural electrodes were implanted. One week
prior to and one week after TBI the video-electrocorticograms were recorded.

2 Method of Detection

Long EEG-records include all phases of wake-sleep cycle of the animals. Sleep
spindles (SS) are a normal physiological EEG-pattern of sleep. One sign of ED is
the increase of amplitude, which is also present in SS that make difficult to auto-
matically recognize ED. Figure 1 shows example of ED and of SS, respectively,
on the day following TBI.

Fig. 1. Upper plot: epileptic discharge; lower plot: sleep spindles.

Algorithm of finding ED has to recognize SS and separate it from ED to avoid
wrong positives results. To solve this problem, fragments of the EEG lasting from
3 to 10 seconds was allocated from daily record by neurophysiologists. They
contain ED or SS. 36 SS and 39 ED were selected to be compared.

All fragments were processed by the 8th order bandpass Butterworth filter
2–124 Hz and a set of notch filters were applied for removing a power line noise
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at 50 and 100 Hz from signals recorded with a sampling rate 250 Hz. After that,
the complex Morlet wavelet was used [5]:
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The equation (1) describes the power spectral density (PSD). The wavelet
transform (2) is based on the Morlet wavelet (3). The coefficients Fb and Fc
equal to 1.

Fig. 2. Ridges (bold lines) of the wavelet spectrograms of epileptic discharge (upper
plot) and sleep spindles (lower plot).

Previously the time-frequency segmentation (detection) method of the SS was
studied in [8]. In [2] the time-frequency properties of the spike-wave discharges in
absence epilepsy with wavelet spectrograms ridges analysis were studied. Start
positions of these discharges were selected manually. An approach to automatic
detection of SS and ED in PE, based on the analysis of the ridges of the wavelet
spectrograms, was developed. Each point of the ridge is the maximum value of
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Fig. 3. PSD histograms for the epileptic discharge (upper plot) and sleep spindles
(lower plot).

power spectral density in this time point. Examples of wavelet spectrograms and
their ridges for ED and SS are shown in figure 2.

SS and ED are characterized by a higher value of the power spectral density
in comparison with the background. For the segmentation of SS and ED from
background activity, it is advised to analyze histogram of power spectral density
at the points of ridge (figure 3).

The histograms have a sharp decline in the region of small values of the power
spectral density (with 2 ∗ 104 in the left graph and 0.4 ∗ 105 in the right graph).
Therefore, these values of power spectral density can be selected as an adaptive
threshold for segmentation of the ED and SS. Areas of the ridge of ED and of SS
where the spectral power density is above the PSD threshold value were selected
(figure 4).

The following parameters were calculated in selected fragments: frequency
range, duration, and the maximum value of power spectral density. These data
can be used to classify SS and ED on long EEG-records.

3 Conclusion

The following results were obtained:
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Fig. 4. Wavelet spectrogram with the segmented ridges of epileptiform discharges
(upper plot) and sleep spindles (lower plot).

– The algorithm for detection of ED and SS on the background activity was
developed.

– 36 EEG records with SS and 39 EEG records with ED were processed using
this algorithm.

– Ridge parameters of the processed EEG records were calculated.

Results of this research will help to detect and to separate ED and SS from
background activity on long EEG records.
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